
Indian Institute of Technology,
Kanpur

Dr. Gaurav Pandey, Dr. Mangal Kothari, Dr. S R Sahoo

Report By: Harsh

I. The Team

Third Year Students :

• Animesh Shashtry

• Deepak Gangwar

• Harsh Sinha

• Shubh Gupta

• Swati Gupta

Second Year Students :

• Aalap Shah

• Bhuvi Gupta

• Hardik Maheshwari

• Hemanth Bollamreddi

• Nishkarsh Aggrawal

• Pritesh

First Year Students :

• Anay Mehrotra

• Anav Prasad

• Ashish Bhatti

• Ashish Patel

• Siddharth Srivastav

• Vaibhav Aggrawal

• Yash Chandnani

1

Contents

I The Team 1

II Introduction 4

III Vision 5
A Methodology . 5
B Camera undistortion and Odometry association 5
C Lidar-Camera Calibration and Obstacle Elimination 6
D Overhead view transformation . 7
E Lane detection . 8
F Heading determination . 8
G Global Map generation . 9

IV Localization Mapping and Motion Planning 10
A Methodology . 10
B Hardware Setup . 10
C Software Setup . 11
D Algorithms . 12

V Experiments and Results 14
A Gazebo simulation of Vision Stack . 15
B Live Run of Vision Stack . 15
C Indoor Testing of Localization, Mapping and Motion Planning 15
D Outdoor Testing of Localization, Mapping and Motion Planning . . . 15

VI Conclusions 16

VIIFuture Work 16

VIIIReferences 17

2

Abstract

In this report we present the techniques involved in applying the concepts of Lo-
calization, Mapping, Path Planning on a Ground Vehicle platform for autonomous
navigation in unexplored territories. Further we also deal with the vision method-
ologies involved for enabling the robot to traverse within lanes, avoid obstacles and
maintain its heading while navigating in the said unfamiliar territories.
The Project tackles the requirements for participating in the Intelligent Ground
Vehicle Competition

Keywords: Localization, Mapping, SLAM, Motion Planning, Intelligent Ground
Vehicle, Waypoint Navigation, Vision

Preprint submitted to EE698 June 13, 2017

www.igvc.org
www.igvc.org

II. Introduction

Gone are the days when giant hulking robots were fixtures on factory floors and
rarely encountered any situation out of their predetermined environments. Today
we are having a revolution in the field of autonomous robotics with Google’s self
driving cars raking up more hours in California than an average human driver there,
to the robots that are exploring the sea bed, quad copters and ground based robots
that are exploring unknown environments. Robots today need to able to deal with
unexpected environments and challenges. In this project we enable a robot to do
waypoint navigation in unknown environments while creating maps of the same en-
vironment all the while avoiding obstacles and also move in between lanes drawn on
the ground. We divided this problem in three parts namely :

• Vision

• Localization and Mapping

• Motion Planning

This project deals with the implementation of Simultaneous Localization and Map-
ping(SLAM) and Vision techniques on a ground based vehicle and the use of Motion
planning techniques on the maps to enable the aforementioned vehicle to do way
point navigation in unknown environments and to maintain the vehicle in between
lanes drawn on the ground, all of this is done online.
The major challenges here are to get correct data from every sensor in the common
frame of reference, create a map using both vision and LiDAR data, use of correct
vision algorithms to obtain the information from the images and then in the correct
amount of time find intelligent paths for the robot to travel along. We got very good
results indoor but couldn’t get a map outdoors.
This report has been divided into two parts one dealing with the Vision aspects of
the robot and the other deals with the Localization Mapping and the Motion Plan-
ning aspects. In both the sections we flow with the data from the sensors on-board;
we start with explaining our methodology for getting the information form the sen-
sors, follow it up with the expansion on the algorithms used. To end the report we
present the results that we have obtained.

4

III. Vision

A. Methodology

The hardware used for the image capture is a web cam called Genius wide cam, with
120◦ view of the environment and the processing is done on Intel NUC on the robot
itself, although the option to do the processing on any laptop of choice is there. The
primary objectives of the vision algorithm are as follows -

• Obstacle Removal

• Lane Detection

• Local and global Occupancy Map updation

Figure 1: Algorithm of the vision stack

The vision stack is divided into following subsections, which are detailed upon in
the following sections:

• Camera undistrotion and Odometry and association

• Lidar-Camera Calibration and Obstacle Elimination

• Overhead view transformation

• Lane detection

• Heading determination

• Global Map generation

B. Camera undistortion and Odometry association

To begin with, we need to procure an image of the space in front of the robot and
convert it into a suitable format for further processing. We have used a wide angle
camera for this purpose with a field-of-view of 120 degrees. With such a wide field
of view, the image produced by the camera is distorted at the edges and hence,

5

needs to be undistorted. Radial distortions arise as a result of the shape of lens,
whereas tangential distortions arise from the assembly process of the camera as a
whole. Radial correction is of the form

xc = x(1 + k1r
2 + k2r

4 + k3r
6)

yc = y(1 + k1r
2 + k2r

4 + k3r
6)

Tangential correction is of form

xc = x+ 2p1xy + p2(r
2 + 2x2)

yc = y + 2p1xy + p2(r
2 + 2y2)

Also, the camera intrinsic matrix [1] needs to be determined which is of the formxy
w

 =

fx 0 cx
0 fy cy
0 0 1

XY
Z


where x, y are camera pixel coordinates and w is the homogenizing term and X, Y, Z
are real world coordinates. We use the classical black-white chessboard approach
using opensource openCV codes to obtain the distortion coefficients as well as camera
intrinsic matrix, and save them to a file. We then use this data while capturing the
image to undistort it.
Since the further processing of the image passes it through various nodes, the image
might be appreciably delayed when it is to be combined into the global map, and
would hence be correlated to false odometry. To avoid this issue, we combine the
image with the correct odometry at a previous stage and pass it along as a hybrid
message of image data and odometry.

C. Lidar-Camera Calibration and Obstacle Elimination

Obstacle removal is an important step because obstacles act as a hinderance to
the lane detection algorithm. We perform this step by mapping the data obtained
from a 2D LiDAR on the video feed from the camera. In order to do so, we need
a transformation matrix from the LiDAR reference frame to the camera reference
frame. This transformation depends upon the placement of the sensors on the robot.
Hence, we first fix the sensors on the robot and then calibrate them to obtain the
required transformation. The rough values of rotation and translation matrices are
calculated by physically measuring these quantities. These values are then fine-
tuned manually by ensuring that there is a proper overlap of the LiDAR points on
the video feed.
Using this transform, we find points on the image corresponding to the obstacles.
Using a small patch around these points as an input for the watershed algorithm
[2], the foreground is separated from the background. The foreground is assumed to
contain all the obstacles. Hence, we replace the entire foreground with zero valued
pixels so that they do not interfere with the lane detection algorithm.

6

Figure 2: Left - Obstacle removed image, Right - LiDAR scan

D. Overhead view transformation

The obstacle-free image has a perspective error because of which the lanes appear
to be converging towards each other which makes separation between the right and
left lane difficult. Hence, this error is removed by an inverse perspective transform
of the image to give a bird’s eye view. This transformation is important as it makes
path planning easier after the lanes have been detected.
The homography matrix for this transform is obtained by placing a chessboard on
the ground plane and obtaining the transform by detecting chessboard corners [3]
and comparing them with their true dimensions which correctly aligns corner points
of the chessboard as they should appear from an overhead view.
The Overhead view transformation is a rotation about the camera center which
converts the real world ground plane into a plane directly in front of the camera
and parallel to the image plane. Hence, first all image pixels are mapped to the
ground plane, followed by a rotation and conversion back into pixel coordinates.
This process is simplified to a multiplication with a perspective matrix.

x′y′
w

 =

fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1


here, x, y, w are homogeneous pixel coordinates and X, Y, Z are mapped real world
coordinates of the ground in front of camera.

Figure 3: Left - Original image, Right - Inverse Perspective Transform (Bird’s eye view)

7

E. Lane detection

The lane detection algorithm makes two assumptions about the lane - 1) The lane
is white in colour, 2) The degree of curvature of the lane is very less hence it can be
approximated by a straight line.
Using the first assumption, a simple thresholding of pixels based on RGB values is
used to filter out background points and keep only the lane points. Erode and dilate
functions are used to remove noise from this filtered image. Assuming our lanes are
straight, Principal Component Analysis [4] is applied on the lane points to find the
best fit line passing through them.
In order to make the above algorithm more accurate, lane points close to the previous
location of the lane are used for PCA because the frame rate is considerably high as
compared to the speed of the robot. Hence, we can assume that the lane will move
a very small distance in successive frames.

Figure 4: Left lane - Blue line, Right Lane - Pink line

F. Heading determination

Motion Planning algorithms require the vision stack to return an approximate head-
ing direction for the robot, so that an efficient path can be planned. This heading
can be assumed parallel to the lane direction, as the robot must roughly move along
this direction at all times.
Using the output from the lane detection algorithm, we apply canny edge detection
[5] , which detects all edges in the frame, in terms of rho(edge length) and theta(slope
angle). Assuming that the frame only contains the lanes(as it comes from the lane
detection algorithm), edge detection returns edges roughly parallel to the lanes, and
an average of all the theta’s obtained can thus be taken as the approximate heading.
A further averaging with the values obtained in the last 20 frames(sliding window),
ensures that the algorithm returns a smooth and jerk invariant output.

8

Figure 5: Occupancy Map Figure 6: Global map

G. Global Map generation

Once the lane lines are seperated from the rest of the image by the image by the lane
detection node, the obtained image must be fused with the occupancy grid containing
the lane map. Here we utilize the combined and corrected odometry generated by
fusing IMU data and encoder data and corrected by scan matching of lidar data.
This odometry had been fused with the image message during an earlier stage and
passed along the nodes so as to avoid propagation delays. Utilizing this odometry
as well as appropriately scaling the image to the resolution of odometry (determined
using intrinsic parameters of camera), we calculate the corresponding rotation and
translation matrices and use them to overlay the image over the occupancy grid
[4]. Each stack of the image increments that point’s probability value, which has a
resolution of 0.01.

9

IV. Localization Mapping and Motion Planning

A. Methodology

In this project we didn’t follow any one paper fully, instead we worked on combining
various methods for autonomous navigation of ground vehicles and implementing
them on the hardware available to us. The methodology used is listed in order
below :-

1. Getting Sensor data.

2. Conditioning the data for further use.

3. Fusing the data from various sensors using EKF [6].

4. Creation of maps using Slam Gmapping [7].

5. Inflation of map elements for motion planning.

6. Motion Planning using RRT [8].

7. Testing indoors and outdoors.

(a) Fire Bird VI (b) Laser Scanner

Figure 7: Hardware Setup

B. Hardware Setup

We used a NeX Robotics’ Fire Bird VI as our robotic platform shown in figure 7a. It
is a two wheel drive robot with a built in low level controller that handles the direct
input to the motor controllers. The following sensors are mounted or embedded on
it :

1. Wheel encoders: Embedded on the robot itself there are two, one on each
wheel, optical encoders which give a tick count on how much the wheels have
rotated. The resolution of the encoders is 3600 ticks per revolution.

2. IMU: SparkFun Razor 9DOF, has 3-Axis Accelerometer with ±16g and 13-bit
resolution, 3-Axis Gyroscope and 3-Axis Magnetometer. With an onboard 8
MHz ATmega 328P, this IMU is capable of calculating the angles onboard
itself. This has a prebuilt driver in ROS.

10

3. Laser Scanner: We used a 360◦ RP LiDAR Laser Scanner that provides an
angular resolution of 1◦ and rotates at 5.5 Hz. The maximum and minimum
range for this device are 6 and 0.2 meters respectively, in between it provides
ranges with an accuracy of 1%. RP LiDAR, shown in figure 7b, also comes
with a prebuilt driver in ROS.

4. GPS: We used a Ublox Neo M8 GPS module, for outdoor navigation. The
accuracy with this module was 4 meters. Although inside we found it not
possible to get any fix(link from satellites) outdoors after few minutes we get
the fixture.

Figure 8: The overall hardware architecture

In addition to these, we also used any laptops at our disposal running Ubuntu 14.04
on mostly sporting an Intel i5 chip, for computing.
The overall hardware architecture is shown in the figure 8.

C. Software Setup

We have used Robot Operating System (ROS) Indigo running on Ubuntu 14.04. We
opted to use ROS due to the these reasons :

• Fire Bird had ROS integration available along with most of the sensors.

• ROS enabled us to go for a very modular program structure where every sensor,
every task could be easily handled separately.

• ROS lets one manage difference in data rates of various sensors and the code
execution frequency by creating buffers of data in form of topics.

• ROS is now a very popular tool among the roboticists, as a result it has a great
abundance of resources for various tasks. For instance we used Slam Gmapping
which is based on Openslam Gmapping, the original implementation of the
paper ”Improved Rao Backwellized Particle Filter[7]”.

11

Figure 9: Overall software architecture.

The full software architecture is depicted in the figure 9. The sensor driver nodes are
depicted by gray boxes. Every node(pink) in the graph communicates by passing
messages. A message is simply a data structure, comprising typed fields. A node
sends out a message by publishing it to a given topic(blue). The topic is a name that
is used to identify the content of the message. ROS nodes are based on a publish /
subscribe model which is a very flexible communication paradigm. Any output that
needs to be supplied to a node can be published to a topic and then the node that
is interested in the data will subscribe to it.

D. Algorithms

Namely, we have used following 3 algorithms with some customization according to
our test robot :

1. Extended Kalman Filter : [6] EKF is a very widely used standard algo-
rithm to fuse data from different sources with the assumption that the model is
linear and all measurements, positions etc are gaussian in nature. As our test
robot uses a differential drive mechanism to traverse, we used the following
motion model : ẋẏ

θ̇

 =

cos(θ) 0
sin(θ) 0

0 1

[v
ω

]

Where v, ω, (x, y, θ) represents linear velocity, angular velocity and position of
the robot respectively.

2. Improved rao-blackwellized particle filters : [7] Generally particle filter
slam is too computationally extensive. It can be made efficient by reducing
number of particles but this results in lesser accuracy. So the paper proposes

12

an adaptive re-sampling method to reduce number of particles in case of grid
mapping. In our indoor implementation we used 3 particles.
We used a RosNode[9] developed by ros community based on the paper. The
node generates a map as well as improves the position of robot via scan-
matching. As to avoid conflict EKF and this node should not publish on
the same topic it introduces a new reference frame MAP(earth fixed) and it
publishes Transformation matrix between map and odom frame while EKF
publishes between odom and robot(base link) frame.[10]

3. Rapidly Exploring Random Tree : [8] RRT is an online fast algorithm
to plan path for non-holonomic robots. We implemented RRT in a RosNode
and did the following 2 key customization :

• Put a constraint on the angle of robot turn so that robot may not waste
more time in turning. This results in straighter paths and faster naviga-
tion of robot.

• Moreover, to decrease computation we update the path only when the
map is updated. Map updation rate is slow so it saves a lot of computation
power.

13

(a) Robot’s navigation starting

(b) Robot’s navigation ending

Figure 10: Rviz output of Robot’s Indoor navigation

V. Experiments and Results

We test our vision algorithms in two phases, we test them in a gazebo simulation and
then on the robot itself. The details are in the following two subsections. Then we
proceed to demonstrate the performance of our software for the localization mapping
and motion planning part on Fire Bird VI robotic platform.

14

A. Gazebo simulation of Vision Stack

All of the codes were tested on a simulated environment developed in gazebo prior
to the live run and were found working as per expectations.
NOTE: The gazebo environment has been developed by first year students in Team
IGVC and not by students in the course.

Figure 11: Gazebo simulation

B. Live Run of Vision Stack

The robot has been tested multiple times on surfaces such as green grass, yellow
patched grass and cemented surface and gives satisfactory results in an evenly lighted
environment. In case of lighting condition changes, primitive thresholding has to be
manually updated to give decent results. In case of large variations in lighting
conditions during the run (like sudden shadows or glare from sun), the results are
not very satisfactory and work needs to be done on improving that aspect. Factors
like camera jerks due to uneven surface also lead to unfavorable results, but error
created by jerks is mitigated once the robot becomes stable again.

C. Indoor Testing of Localization, Mapping and Motion Planning

A fixed global destination was given to the software and the robot maneuvered
itself to the goal in an unknown indoor environment. The results are depicted in
the figure 10. It shows the map generated by laser scan (black dots), the inflated
map/configuration space(dark gray dots), the explored areas(light gray region), the
final goal(green arrow), the robot’s current pose(blue arrow), the path generated by
RRT(pink line), the robot’s optometry (small maroon arrows).

D. Outdoor Testing of Localization, Mapping and Motion Planning

The outdoor tests were conducted in an open ground with nearly no buildings and
trees. The robots mapping as well as localization algorithms fail due to the absence of
laser scan points. As result of which we weren’t able to do the way point navigation
outdoors.

15

VI. Conclusions

The technology of autonomous navigation and exploration has an immense range of
applications in many fields, and a tremendous scope of further growth and improve-
ment. This project is a small step in this undertaking, with focus on Vision based
sensing systems, Localization, mapping and Motion Planning.
Our vision stack has an inherent advantage over other traditional sensing systems
like IR, and ultrasonics in that cameras can be used to reduce the overall cost,
maintaining high degree of intelligence, flexibility and robustness. We have covered
the whole vision stack, starting from undistortion of live video feed, to successful
extraction of important parameters like traversable area between the lane, heading,
obstacle avoidance and elimination in real time as well as converting them to a form
easily integrable with further nodes in the sequence (Mapping, Localisation and Mo-
tion Planning).
In this project we successfully demonstrated the autonomous navigation of a ground
vehicle in an indoor unknown territory and have developed and easily integrable sys-
tem for Localization Mapping and Motion Planning on ground vehicles. The paths
planned are accounted for the size of the robot and also take into consideration that
the general robots are non-holonomic. Our system can work on robots which can
provide the odometry information and a LiDAR data only.
Rigorous testing and a complete practical implementation on an actual robotic sys-
tem implies that all algorithms are feasible, robust and directly applicable in the
real world.

VII. Future Work

Our future work will focus on extending the approach to provide fully automated
camera and LiDAR to camera calibrations, as well as further generalizing the lane
detection algorithms, making them light and weather invariant and robust to a wide
variety of environments. Further testing of the algorithms as well as a full integration
with motion planning also needs to be performed in order to detect any possibilities
of failure in certain boundary conditions, and debug them.
Indoor environment presents large number of points which is great for scan matching,
so the maps are generally correct but as we reduce the number of the points available
for scan matching the quality keeps on reducing. In an out door environment we
might need to use some other SLAM algorithm entirely or may have to sack scan
matching. In the coming time we plan to do the same.

16

VIII. References

[1] Monocular Camera Calibration, http://wiki.ros.org/camera_

calibration/Tutorials/MonocularCalibration, 2010. [Online; accessed
2017-04-20].

[2] S. Beucher, F. Meyer, The morphological approach to segmentation: the wa-
tershed transformation, OPTICAL ENGINEERING-NEW YORK-MARCEL
DEKKER INCORPORATED- 34 (1992) 433–433.

[3] OpenCV Chessboard vision tools, http://docs.opencv.org/2.4/modules/

calib3d/doc/camera_calibration_and_3d_reconstruction.html, 2011.
[Online; accessed 2017-04-27].

[4] G. Pandey, Probabilistic mobile robotics, Lecture Slides, EE698A, 2017.

[5] J. Canny, A computational approach to edge detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-8 (1986) 679–698.

[6] W. Meeussen, Robot pose ekf, https://github.com/ros-planning/

navigation/tree/kinetic-devel/robot_pose_ekf, 2009.

[7] W. B. C. Stachniss, Giorgio Grisetti, Improved techniques for grid mapping
with rao-blackwellized particle filters, IEEE Transactions on Robotics 23 (2007)
34–46.

[8] S. M. Lavalle, Rapidly-Exploring Random Trees: A New Tool for Path Plan-
ning, Technical Report, 1998.

[9] ROS-Perception, Slam gmapping ros node, https://github.com/

ros-perception/slam_gmapping, 2009.

[10] W. Meeussen, Coordinate rep 105: Frames for mobile platforms, http://www.
ros.org/reps/rep-0105.html, 2010.

17

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://github.com/ros-planning/navigation/tree/kinetic-devel/robot_pose_ekf
https://github.com/ros-planning/navigation/tree/kinetic-devel/robot_pose_ekf
https://github.com/ros-perception/slam_gmapping
https://github.com/ros-perception/slam_gmapping
http://www.ros.org/reps/rep-0105.html
http://www.ros.org/reps/rep-0105.html

	The Team
	Introduction
	Vision
	Methodology
	Camera undistortion and Odometry association
	Lidar-Camera Calibration and Obstacle Elimination
	Overhead view transformation
	Lane detection
	Heading determination
	Global Map generation

	Localization Mapping and Motion Planning
	Methodology
	Hardware Setup
	Software Setup
	Algorithms

	Experiments and Results
	Gazebo simulation of Vision Stack
	Live Run of Vision Stack
	Indoor Testing of Localization, Mapping and Motion Planning
	Outdoor Testing of Localization, Mapping and Motion Planning

	Conclusions
	Future Work
	References

