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ABSTRACT

Image Super Resolution task has been widely studied in the
realm of Image Processing. This task has been performed
through various methods and one of those is the Dictionary
Learning based method, which is used specifically for Single
Image Super Resolution. In the following report we explore
various techniques for Single Image Super Resolution with
Dictionary Learning in the Wavelet Domain. We analyze the
effect of the choice of different wavelet for this task and also
preform a comparison between different methods for dictio-
nary learning. We then also propose a simple CNN based
architecture to see if wavelet domain might perform well in
the Deep Learning setting as well.

Index Terms— Single Image Super Resolution, Wavelets

1. INTRODUCTION

The aim of Super Resolution(SR) is to recover a high res-
olution(HR) image from one or several low resolution(LR)
images. SR was approached a decade ago primarily by two
methods : (i) Classical Multi-Image SR, in which a set of low-
resolution images of the same scene are used as input. [1, 2, 3]
(ii) Example-Based SR, in which correspondences between
LR and HR image patches are learned from a database of LR
and HR images, was introduced by [4, 5, 6].

In Classical SR, the HR images recovered are guaranteed
to be the true HR images provided enough LR images are
available of the scene. In Example-Based SR, also termed as
Single Image Super-Resolution(SISR), the HR images recov-
ered are ‘hallucinated’ and are not guaranteed to be the true
images.

Through various works it has been proved that sparse
learned dictionaries preform well for many image processing
tasks. The reason for this stems form the fact that in learning
a sparse representation, one also ends up learning (and ex-
tracting) salient features of the image. In many recent works
it was shown that the sparse dictionary learning methods
also perform well on the Super Resolution tasks. Wavelets
have also been thoroughly studied and explored in the past
and have been applied to the field of image super resolution
recently.

In this report we explore application of sparse learning
in wavelet domain for singe image super resolution. We be-
gin with a hypothesis that the choice of wavelet is important
for effective application and proceed to show this experimen-
tally and present an in-depth comparison of different wavelets
for SISR. We then also explore the application of wavelets
in Deep Learning with a simple and novel method based on
Convolutional Neural Networks.

Fig. 1. General framework of SISR

2. RELATED WORK

Aharon et al, developed K-SVD, an algorithm to obtain a dic-
tionary best representng a set of training signals under spar-
sity constraints in 2006. K-SVD has become a standard for
dictionary learning tasks where it is used in conjunction with
any pursuit method such as OMP [7] and FOCUSS[8].

Ophir et al. proposed a method in which multi-scale dic-
tionaries were learned using wavelets in [9]. Using wavelets
is shown to better capture the image features. In [10], Naz-
zal et al. were the first to use to wavelet domain dictionary
learning for SISR using K-SVD.

Sparse approach to SISR was proposed in [11]. Yang et al.
introduced the coupled-dictionary learning paradigm in [12].

In [13], Ahmed et al. use coupled dictionary learning
building upon the work of [10], to take advantage of the direc-
tionality of wavelet sub-bands and the persistence of wavelet
coefficients across scale.

Techniques such as semi-coupled dictionary learning
[14], have also been used for SISR. Dictionary learning in
wavelet domain for SISR is relatively a new field.



3. COUPLED K-SVD IN WAVELET DOMAIN FOR
SISR

Fig. 2. 2D Discrete Wavelet Transform (Image obtained from
Mathworks Website)

In sparse representation based SISR, a HR patch xH is
sparsely coded over a HR dictionary DH and an LR patch xL
is sparsely coded over an LR dictionary DL :

xH ≈ DHαH (1)
xL ≈ DLαL (2)

where αH and αL are the coefficient vectors for xH and
xL respectively.

Representing the conversion of a HR image into an LR
image by the operator, Ψ, and enforcing that the HR and LR
dictionaries are coupled, we get :

H = ΨDL (3)
xL = ΨxH ≈ ΨDHαH ≈ DLαH (4)

=⇒ xH ≈ xL (5)

Hence, we get can reconstruct the HR patches by the fol-
lowing means :

xH = DHαH ≈ DHαL (6)

The idea of using LR as the HR coefficients when the dic-
tionaries are coupled together is used in [12, 15].

The overview of the entire algorithm is shown in 3 and 5.

3.1. Dictionary Training

A dataset containing HR images is taken as input. A two-
level DWT (Discrete Wavelet Transform) decomposition is
performed to generate the detail sub-bands. IHh, IHv and
IHd are the horizontal, vertical and diagonal sub-bands of
HR subbands and ILh, ILv and ILd are the horizontal, ver-
tical and diagonal sub-bands of LR sub-bands. Wavelet inter-
polation is performed on the LR sub-bands to increase their
size and match with the size of the HR image. The sub-bands
obtained are termed as the Mid Resolution (MR) sub-bands
and denoted by IMh, IMv and IMd. For each of the detail

Fig. 3. Dictionary Training Algorithm

sub-bands (y = {h, v, d}), samples of HR/LR pairs are ob-
tained and vectorized to form the training data matrices WHy

and WMy . The dictionaries are solved through the following
optimization problem :

argmin
DLy,DHy

ΣNi=1||WMy(i)−DLyαy(i)||22+

||WHy(i)−DHyαy(i)||22
s.t. ||αy(i)||0 ≤ T0, ||DLy(k)||2 ≤ 1, ||DLy(k)||2 ≤ 1,

k = 1, 2, ...,K

where K is the dictionary size, WHy(i) and WMy(i) are
ith training vector of the HR and LR dictionaries, DHy(k)
and DLy(k) are the kth atoms for the HR and LR dictionar-
ies. T0 is the level of sparsity. The entire dictionary learning
algorithm is shown in 3.

Fig. 4. The first few atoms for LR horizontal, vertical and
diagonal dictionaries[From left to right]



Fig. 5. Image Reconstruction Algorithm

3.2. Image Reconstruction

The algorithm reconstructs the HR image by estimating the
HR detail wavelet sub-bands of the image. The LR image is
assumed to be the approximation image of the wavelet trans-
form of HR image. This assumption holds since the oper-
ation of blurring is similar to the low pass scaling filter of
wavelet transform. A 1-level forward DWT of the LR image
is obtained. Wavelet interpolation is performed for each de-
tail wavelet detail sub-band to make them have the same size
as that of the sub-bands of HR image which is to be recon-
structed. The sparse coefficients of patches extracted from
each sub-band is calculated by solving the optimization prob-
lem :

argmin
αLy

||WMy −DLyαLy||2 s.t. ||αLy||0 ≤ T0

The above basis pursuit problem can be solved by a num-
ber of ways. Orthogonal Matching Pursuit(OMP) [7] was
chosen for the above task. Using the calculated sparse repre-
sentation coefficients and the corresponding HR dictionaries
the wavelet sub-bands of the HR images are then estimated :

WHy = DHyαHy ≈ DHyαLy (7)

.
The patches are reshaped into 2D patches and merged to

construct the full wavelet detail sub-band images. An Inverse
DWT is then performed using the recovered detail sub-bands
and using the LR image as the approximation sub-band im-
age to obtain the HR image. The entire dictionary learning
algorithm is shown in 5.

4. THE ISSUE WITH SYM29

Fig. 6. The Decomposition and Reconstruction, low and high
pass filters for ‘sym29’

In [13], the authors have used symlet wavelet of order 29
and have treated the borders with periodic extensions. They
have referred to Nazzal et. al’s work [10] for the idea to use
this specific wavelet. Now, Nazzal et al, do not give any spe-
cific reasons for the use of this wavelet and cite [16] for the
inspiration.

Since different wavelets have quite different properties,
the effect of wavelet choice should be significant. With this
hypothesis we will analyze the effect of different wavelets on
the Super Resolution task in the same setting of [13].

5. EXPERIMENTATION

5.1. Comparison of different Wavelets

Three well-known prominent types of wavelets were chosen
for comparison: (i) Daubechies (ii) Symplets (iii) Coiflets.
All threes families of orthogonal wavelets were designed by
Ingrid Daubechies. For the 3D surface plots, the x-axis is the
sparsity chosen for the dictionary learning and reconstruction
and y-axis is the wavelet number.

Symlet family of wavelets which are a modified version
of Daubechies wavelets with increased symmetry appear to
be the best for the task of SISR. The authors of this work
are unable to find a theoretical explanation for the observed
results.

The following observations can be made empirically:

• Sparsity has a weak effect. SNR and SSIM fall with in-
crease in sparsity. One possible explanation why good
results are being obtained at low sparsity is that the
patches from the wavelet transformed images tend to
be sparse resulting in fewer atoms being needed to rep-
resent the sampled patches.

• Choice of Wavelet is important to the task of SISR.

• Symlets with wave number in the form of 4N + 3 are a
poor choice for SISR.



Fig. 7. The surface plot of average SSIM vs Choice of
Wavelet

Fig. 8. SSIM for ‘sym29’ vs sparsity

• Symlets with wave number in the form of 4N + 1 are a
good choice.

5.2. Convolutional Neural Networks in Wavelet Domain
for SISR

Recently Deep Learning has become an extremely important
part of the field of image processing. Convolutional Neural
Networks specially have been used for a plethora of tasks in-
cluding super resolution. As wavelets have not been explored
much in conjunction with CNNs, we thus propose a simple
CNN based architecture as shown in image 11

Our proposed network takes as input a stack of all four of
the outputs of a discreet wavelet transform with some of the
wavelets which we found were performing better on SISR in
the course of experimentation in previous section, for instance

Fig. 9. The surface plot of average PSNR vs Choice of
Wavelet

Fig. 10. PSNR for ‘sym29’ vs sparsity

Fig. 11. Simple CNN for SISR in Wavelet Domain



sym9. In the middle we have 5-10 hidden convolutional layers
each of which is activated with a ReLU. At the output we
calculate a simple Mean Squared Error (MSE) Loss between
the 4 layer stack formed from the Discrete wavelet transform
using same parameters as before and the output of the CNNs.
We minimize this loss with a gradually decreasing learning
rate and at testing time we reconstruct the image from the 4
layer output of the network using an Inverse Discrete Wavelet
Transform(IDWT2).

We train the network on 800 high resolution images from
the NTIRE dataset. We then conduct test for this using 100
images from the same dataset. We use Peak Signal to Noise
Ratios (PSNR) scores as the metric for the results. While con-
ducting these test we have observed values of PSNRs which
are as high as 44 dBs and an average of 34 dB, which is very
close the highest performing methods on the NTIRE dataset.

Fig. 12. Results with the image of a flower. Image taken from
NTIRE dataset. (Top Left : WaveNN, Top Right : Bicubic,
Bottom : Original)

5.3. Comparison of Methods

A comparison of the algorithms of [13, 14, 12] has been
performed. ‘sym29’, a sparsity of 3 and dictionary size of
256 has been used for [13]. The K-SVD library, KSVDBox
v12, implemented by Ron Rubinstein http://www.cs.
technion.ac.il/˜ronrubin/software.html is
used to perform the dictionary learning. The code for [14] was
obtained from http://www4.comp.polyu.edu.hk/

˜cslzhang/SCDL.htm. The code for [12] was obtained
from http://www.ifp.illinois.edu/˜jyang29/
codes/ScSR.rar

The training data used in all 3 algorithms consisted of 70 im-
ages made available by J. Yang as part of the code for their
implementation [11]. The testing data consisted of 5 images.

Fig. 13. Results with the image of a bird. Image taken from
NTIRE dataset. (Top Left : Orignal, Top Right : [13], Bottom
Left : Bicubic, Bottom Right : [12])

Fig. 14. Results with Lena. (Top Left : Orignal, Top Right :
[13], Bottom Left : Bicubic, Bottom Right : [12])

Time analysis of algorithms during Reconstruction (in
seconds)

Image [13] (Our Implementation) [12] [14]

Lena 13.53 651.93 1724.5
Bird 7.37 417.02 1066.65
PCB 12.42 1728.58 1653.50
Crab 7.27 393.64 1047.79

Butterfly 63.74 3399.46 5152.26
Sum 104.33 6590.63 10644.7



SSIM of algorithms

Image [13] (Our Implementation) [12] [14]

Lena 0.9331 0.8881 0.8752
Bird 0.9710 0.8527 0.8398
PCB 0.9365 0.8743 0.9264
Crab 0.8894 0.8743 0.9148

Butterfly 0.9615 0.8857 0.9414
Mean 0.9383 0.8750 0.8995

PSNR of algorithms

Image [13] (Our Implementation) [12] [14]

Lena 36.33 34.09 36.80
Bird 30.33 29.22 31.56
PCB 30.71 28.73 29.43
Crab 36.60 35.38 37.76

Butterfly 32.14 32.9 35.03
Mean 33.22 32.08 34.12

6. FUTURE WORK

In this project we established a few heuristics for the selection
of the wavelets which are to be used for SISR. As this was
done experimentally one of the best expansion to this project
would be the addition of theoretical basis for the results. In
the deep learning architecture, we can introduce a patch based
method with overlap. This method should increase the PSNR
values as one patch would be seen by the network multiple
times and in different contexts.
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